Aug. 11, 2025
From engine blocks to door handles, die casting is a fast, accurate, and repeatable metal production technique suitable for large or small parts. Die casting parts have an excellent surface finish, and the process is compatible with a range of non-ferrous metals.
For more information, please visit our website.
Because of the high startup costs associated with die casting, the process is typically used for high-volume production, where the scale of manufacturing makes up for the high machinery and tooling costs. Die cast prototypes and low-volume production runs are harder to obtain, as it is in the economic interests of die casting companies to work with customers placing bulk orders. However, 3ERP currently provides a unique die casting solution for customers wishing to place smaller die casting orders.
This article takes an in-depth look at metal die casting, explaining the suitable materials, surface finishes, and applications for the process.
Die casting is a type of metal casting that uses high pressure to force molten metal into a mold cavity formed by two dies. It shares traits with the plastic manufacturing process of injection molding.
Within the larger metal casting landscape, die casting is one of the most popular techniques due to its accuracy, high quality, and level of detail. The broader category of metal casting, which has existed for thousands of years, contains many different processes that use a mold to form liquid metal. Historically, such a process usually involved pouring the liquid metal into the mold with the aid of gravity — and many metal casting processes still work this way. Die casting, however, is a relatively new form of metal casting, introduced in the 19th century, and it uses pressure instead of gravity to fill the mold cavity.
Die casting is sometimes called high-pressure die casting, due to the amount of pressure — typically 10–140 megapascals — used to force the metal into the mold cavity. The related process of low-pressure die casting (LPDC) is less common. Die casting typically falls into one of two categories: hot-chamber die casting and cold-chamber die casting, which are suitable for different types of metal. However, there are also other more niche types of die casting, such as semi-solid metal casting (SSM).
In simple terms, metal die casting works by using high pressure to force molten metal into a mold cavity, which is formed by two hardened steel dies. Once the cavity is filled, the molten metal cools and solidifies, and the dies open up so the parts can be removed. In practice, however, there are many steps in the process, and skilled engineers are required to operate die casting equipment.
Here we will divide the die casting process into three stages:
A die casting mold consist of at least two halves: the cover side (mounted on a fixed plate) and the ejector side (on a moveable plate). Some dies also have other sections like slides and cores, which are used to produce more complex parts, such as those with holes and threads.
Depending on the size of the manufactured parts, a die casting mold may have multiple cavities to enable the production of multiple parts per cycle. Such molds either have several identical cavities (multiple-cavity die) or a mix of different cavities to produce different parts (unit die).
Tooling for die casting must be incredibly strong and thermally resistant, in addition to having good wear resistance and ductility. They are therefore made from high-performance hardened tool steels — often heat-treated — allowing them to go through hundreds of casting cycles per hour and up to two million cycles over their entire lifespan. Die casting tooling must maintain performance under very high clamping forces.
Making a die casting mold starts with computer-aided design (CAD) used in conjunction with casting-specific design and simulation tools. As with injection molds, tooling for die casting must have sprue holes, runners, and gates to allow the molten material to enter the cavity. Locking pins and ejector pins must also be incorporated to secure the mold and facilitate ejection. The digital design of the mold allows for the creation of complex shapes and tight tolerances.
CNC machining is widely used to manufacture the die casting tooling. Typically, die casting moldmaking begins with rough machining of the mold shape, followed by heat treatment of the metal mold, then finally a round of finish machining. Prototype-grade dies can also be made using rapid tooling, using either CNC machining or other processes like selective laser sintering (SLS).
Similar to the injection molding process , after moldmaking, the die casting parts can be made in the die casting machine. The die casting process comprises four main stages: preparation, filling, ejection, and shakeout.
However, the casting process varies slightly depending on whether a hot chamber or cold chamber is used. These two variants of the high-pressure die casting process offer different advantages: one is good for high-speed casting, while the other accommodates a wider variety of casting materials.
During hot chamber die casting, the metal die casting machine contains the necessary equipment for heating up the metal to a molten state. Because it is a self-contained system, it is much faster than the alternative, offering short cycle times, though it is only suitable for a selection of casting materials, including zinc, tin, and lead alloys.
The cold chamber die casting process requires the use of a separate furnace to heat the metal. This naturally slows down production rates, as the molten metal must be brought to the die casting machine with a ladle. However, because a separate furnace is more powerful than a hot chamber die casting machine, metals with high melting points can be cast. This method is suitable for aluminum casting.
Regardless of whether hot chamber or cold chamber machine is used, the metal die casting process typically proceeds as follows:
During mold preparation, the interior surfaces of the two die halves are coated with a lubricant to facilitate ejection once the castings are complete. The die halves can then be closed and secured with locking pins.
Filling of the mold is achieved using a pressure system. This system differs between hot chamber and cold chamber systems. In both, the end result is molten metal being forced by a plunger into the mold cavity via the sprue. High pressures — up to 35 megapascals in a hot chamber and 140 megapascals in a cold chamber — ensure fast and comprehensive filling, which in turn leads to consistent cooling that prevents uneven shrinkage and consequent part deformation. Pressure is maintained during cooling.
The two die halves are opened and the ejector pins are used to remove the castings. Typically, the dies are then immediately re-closed ready for the next shot. Meanwhile the finished castings are ready for shakeout, which involves removing scrap sections of the shot such as sprues, runners, and flash (seepage of material at the parting line). This material removal can be achieved using manual tools, tumbling, or with a hydraulic trim die.
Many metal die casting parts require minimal secondary operations. This is due to the high pressures involved, which enable a high level of detail and good surface finish. However, many net-shape and near-net-shape castings also require precision machining for holes, threads, and other features. Some casting metals are easier to machine than others: magnesium die casting and aluminum die casting, for instance, are highly suited to post-machining.
A secondary benefit of post-machining die castings is the ability to use the on-machine inspection capabilities of the CNC machine, allowing the machinist to validate the parts.
Die casting is a powerful, versatile process suitable for a range of parts, from engine components to electronics housings. Reasons for the versatility of die casting include its large build area, range of material options, and ability to make detailed, repeatable, thin-walled parts.
Manufacturers must consider certain factors and variables when choosing die casting materials. These include:
All of these factors should be considered when choosing a die casting material for parts or prototypes.
Aluminum is one of the main die casting metals, and aluminum alloys are used in cold-chamber die casting. These alloys typically contain silicon, copper, and magnesium.
Aluminum die casting alloys are lightweight and offer good dimensional stability, which makes them a good choice for complex, fine-featured parts. Other advantages of aluminum casting include good corrosion resistance, temperature resistance, and thermal and electrical conductivity.
Common die casting aluminum alloys include:
Magnesium is another very popular die casting material. It is even lighter than aluminum, with the added advantage of being highly machinable — making it suitable for cast parts that require additional machined details or machined surface finishing.
A major advantage of magnesium die casting alloys is their suitability for hot-chamber die casting, making them easier to use than die casting metals like aluminum. Other elements in magnesium alloys include aluminum, zinc, manganese, and silicon.
Common magnesium die casting alloys include:
Another major category of die casting metals is zinc alloys. Castable in a hot-chamber die casting machine, zinc casting is the most manufacturer-friendly die casting option and offers other benefits like impact strength, ductility, and suitability for plating. Due to its castability, it also results in minimal die wear.
Zinc is heavier than aluminum and magnesium and is usually alloyed with aluminum, copper, and magnesium.
Common zinc die casting alloys include:
Other die casting materials include copper, silicon tombac, lead, and tin alloys, in addition to zinc-aluminum alloys.
Copper alloys exhibit high strength, hardness, and corrosion resistance, in addition to excellent dimensional stability. Meanwhile lead and tin alloys are very dense and can be resistant to corrosion. Zinc-aluminum alloys are recognizable by the ZA prefix; those with a lower aluminum content can be hot-chamber die cast, but those with 11% or more typically cannot.
High-pressure die casting produces parts to a high standard, and finishing options can often be kept to a minimum. However, there are many functional and cosmetic finishing options available for die casting parts.
A standard finishing procedure is deburring, which can be thought of as a continuation of the shakeout stage. Deburring involves the removal of imperfections caused by the manufacturing process and is deployed to normalize the appearance and function of the part without adding any specific texture or color.
Methods of deburring include:
Once imperfections have been removed from the metal die casting parts using a deburring process like sandblasting or manual sanding, it is possible to perform secondary finishing options to transform the surface finish of the castings. These finishing techniques adjust the texture or color of the die casting parts.
Secondary die casting finishes include:
Die casting is a common manufacturing process used by a broad range of companies. However, finding a die casting manufacturer is much more difficult than finding, for example, a machinist or 3D printing service provider. This is because die casting is typically used by large parts suppliers for high-volume production.
For small and medium-size companies that require metal die casting parts, selecting a die casting manufacturer poses challenges. Typically, manufacturers in this domain will fall into one of the following four categories:
Clearly, this makes it hard for smaller companies to find a die casting partner. If post-machining is required, such companies often accept the longer lead times offered by the second category of die casting partner.
But there is another option: by working with a small or medium-size metal die casting partner and a dedicated machining partner like 3ERP — combining options 1 and 4, in effect — companies can order smaller volumes of die casting parts with post-machining with surprisingly short lead times.
At 3ERP, we have a selection of trusted die casting partners with whom we work to provide a seamless casting and finishing service, getting quality cast parts manufactured and delivered in a short timeframe.
You will get efficient and thoughtful service from Yuhui.
As with most manufacturing processes, high-pressure die casting comes with its own set of design rules and constraints. These include parting line considerations, draft angles, and wall thickness limitations.
A die casting part is made using two hardened steel dies. The line where the two dies meet is called the parting line, and this line is often visible after casting in the form of flash — a thin extrusion of excess material that has escaped the cavity at the parting line due to insufficient clamping force.
During die casting design, the designer must find a suitable location for the parting line, i.e. decide where the mold will be split in half. Doing so depends on several factors, including:
Small amounts of flash are inevitable, so designers should prepare for the necessity of trimming it after the casting is removed from the mold.
As with other casting and molding processes, die casting parts are suited to consistent wall thicknesses, as this encourages consistent filling and cooling of the metal castings, reducing the likelihood of uneven shrinkage and warping.
Metal die casting parts require a small amount of draft — tapered sides of the mold cavity — so the castings can be easily ejected from the dies without damaging them. All surfaces parallel with the die opening direction require draft.
Inner surfaces like untapped holes require a greater draft angle than external walls (which naturally shrink away from the inside of the mold).
Fillets are rounded internal corners that increase the load-bearing capacity of die castings. They are also easier to manufacture than sharp internal corners, so should be incorporated into die casting designs as standard. Using an equal radius across fillets is preferable to fillets with varying radii.
Radii are rounded external corners and play a different but equally important function, helping to improve metal flow in the mold cavity.
Ribs are small protrusions from the die casting part that serve to increase strength and stiffness without resorting to thicker walls and increased material usage. They also improve metal flow. Note that ribs require their own fillet and radius considerations for maximum strength and flow.
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.
The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process.[1] Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency.
Die casting equipment was invented in for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in for a small hand-operated machine for the purpose of mechanized printing type production. In Ottmar Mergenthaler invented the Linotype machine, which cast an entire line of type as a single unit, using a die casting process. It nearly completely replaced setting type by hand in the publishing industry. The Soss die-casting machine, manufactured in Brooklyn, NY, was the first machine to be sold in the open market in North America.[2] Other applications grew rapidly, with die casting facilitating the growth of consumer goods, and appliances, by greatly reducing the production cost of intricate parts in high volumes.[3] In ,[4] General Motors released the Acurad process.[5]
The main die casting alloys are: zinc, aluminium, magnesium, copper, lead, and tin; although uncommon, ferrous die casting is also possible.[6] Specific die casting alloys include: zinc aluminium; aluminium to, e.g. The Aluminum Association (AA) standards: AA 380, AA 384, AA 386, AA 390; and AZ91D magnesium.[7] The following is a summary of the advantages of each alloy:[8]
As of , maximum weight limits for aluminium, brass, magnesium, and zinc castings are estimated at approximately 70 pounds (32 kg), 10 lb (4.5 kg), 44 lb (20 kg), and 75 lb (34 kg), respectively.[9] By late-, press machines capable of die casting single pieces over-100 kilograms (220 lb) were being used to produce aluminium chassis components for cars.[10]
The material used defines the minimum section thickness and minimum draft required for a casting as outlined in the table below. The thickest section should be less than 13 mm (0.5 in), but can be greater.[11]
Metal Minimum section Minimum draft Aluminium alloys 0.89 mm (0.035 in) 1:100 (0.6°) Brass and bronze 1.27 mm (0.050 in) 1:80 (0.7°) Magnesium alloys 1.27 mm (0.050 in) 1:100 (0.6°) Zinc alloys 0.63 mm (0.025 in) 1:200 (0.3°)There are a number of geometric features to be considered when creating a parametric model of a die casting:
There are two basic types of die casting machines: hot-chamber machines and cold-chamber machines.[14] These are rated by how much clamping force they can apply. Typical ratings are between 400 and 4,000 st (2,500 and 25,400 kg).[8]
Hot-chamber die casting, also known as gooseneck machines, rely upon a pool of molten metal to feed the die. At the beginning of the cycle the piston of the machine is retracted, which allows the molten metal to fill the "gooseneck". The pneumatic- or hydraulic-powered piston then forces this metal out of the gooseneck into the die. The advantages of this system include fast cycle times (approximately 15 cycles a minute) and the convenience of melting the metal in the casting machine. The disadvantages of this system are that it is limited to use with low-melting point metals and that aluminium cannot be used because it picks up some of the iron while in the molten pool. Therefore, hot-chamber machines are primarily used with zinc-, tin-, and lead-based alloys.[14]
These are used when the casting alloy cannot be used in hot-chamber machines; these include aluminium, zinc alloys with a large composition of aluminium, magnesium and copper. The process for these machines start with melting the metal in a separate furnace.[15] Then a precise amount of molten metal is transported to the cold-chamber machine where it is fed into an unheated shot chamber (or injection cylinder). This shot is then driven into the die by a hydraulic or mechanical piston. The biggest disadvantage of this system is the slower cycle time due to the need to transfer the molten metal from the furnace to the cold-chamber machine.[16]
Two dies are used in die casting; one is called the "cover die half" and the other the "ejector die half". Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate pieces that can be replaced relatively easily and bolt into the die halves.[17]
The dies are designed so that the finished casting will slide off the cover half of the die and stay in the ejector half as the dies are opened. This assures that the casting will be ejected every cycle because the ejector half contains the ejector pins to push the casting out of that die half. The ejector pins are driven by an ejector pin plate, which accurately drives all of the pins at the same time and with the same force, so that the casting is not damaged. The ejector pin plate also retracts the pins after ejecting the casting to prepare for the next shot. There must be enough ejector pins to keep the overall force on each pin low, because the casting is still hot and can be damaged by excessive force. The pins still leave a mark, so they must be located in places where these marks will not hamper the casting's purpose.[17]
Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies.[17] Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time.[11] Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and minimizes scrap. No risers are used because the high pressure ensures a continuous feed of metal from the gate.[18]
The most important material properties for the dies are thermal shock resistance and softening at elevated temperature; other important properties include hardenability, machinability, heat checking resistance, weldability, availability (especially for larger dies), and cost. The longevity of a die is directly dependent on the temperature of the molten metal and the cycle time.[17] The dies used in die casting are usually made out of hardened tool steels, because cast iron cannot withstand the high pressures involved, therefore the dies are very expensive, resulting in high start-up costs.[18] Metals that are cast at higher temperatures require dies made from higher alloy steels.[19]
Die and component material and hardness for various cast metals Die component Cast metal Tin, lead & zinc Aluminium & magnesium Copper & brass Material Hardness Material Hardness Material Hardness Cavity inserts P20[note 1] 290–330 HB H13 42–48 HRC DIN 1. 38–44 HRC H11 46–50 HRC H11 42–48 HRC H20, H21, H22 44–48 HRC H13 46–50 HRC Cores H13 46–52 HRC H13 44–48 HRC DIN 1. 40–46 HRC DIN 1. 42–48 HRC Core pins H13 48–52 HRC DIN 1. prehard 37–40 HRC DIN 1. prehard 37–40 HRC Sprue parts H13 48–52 HRC H13The main failure mode for die casting dies is wear or erosion. Other failure modes are heat checking and thermal fatigue. Heat checking is when surface cracks occur on the die due to a large temperature change on every cycle. Thermal fatigue is when surface cracks occur on the die due to a large number of cycles.[20]
Typical die temperatures and life for various cast materials[21] Zinc Aluminium Magnesium Brass (leaded yellow) Maximum die life [number of cycles] 1,000,000 100,000 100,000 10,000 Die temperature [°C (°F)] 218 (425) 288 (550) 260 (500) 500 (950) Casting temperature [°C (°F)] 400 (760) 660 () 760 () ()The following are the four steps in traditional die casting, also known as high-pressure die casting,[5] these are also the basis for any of the die casting variations: die preparation, filling, ejection, and shakeout. The dies are prepared by spraying the mould cavity with lubricant. The lubricant both helps control the temperature of the die and it also assists in the removal of the casting. The dies are then closed and molten metal is injected into the dies under high pressure; between 10 and 175 megapascals (1,500 and 25,400 psi). Once the mould cavity is filled, the pressure is maintained until the casting solidifies. The dies are then opened and the shot (shots are different from castings because there can be multiple cavities in a die, yielding multiple castings per shot) is ejected by the ejector pins. Finally, the shakeout involves separating the scrap, which includes the gate, runners, sprues and flash, from the shot. This is often done using a special trim die in a power press or hydraulic press. Other methods of shaking out include sawing and grinding. A less labor-intensive method is to tumble shots if gates are thin and easily broken; separation of gates from finished parts must follow. This scrap is recycled by remelting it.[14] The yield is approximately 67%.[22]
The high-pressure injection leads to a quick fill of the die, which is required so the entire cavity fills before any part of the casting solidifies. In this way, discontinuities are avoided, even if the shape requires difficult-to-fill thin sections. This creates the problem of air entrapment, because when the mould is filled quickly there is little time for the air to escape. This problem is minimized by including vents along the parting lines, however, even in a highly refined process there will still be some porosity in the center of the casting.[23]
Most die casters perform other secondary operations to produce features not readily castable, such as tapping a hole, polishing, plating, buffing, or painting.
After the shakeout of the casting it is inspected for defects. The most common defects are misruns and cold shuts. These defects can be caused by cold dies, low metal temperature, dirty metal, lack of venting, or too much lubricant. Other possible defects are gas porosity, shrinkage porosity, hot tears, and flow marks. Flow marks are marks left on the surface of the casting due to poor gating, sharp corners, or excessive lubricant.[24]
Water-based lubricants are the most used type of lubricant, because of health, environmental, and safety reasons. Unlike solvent-based lubricants, if water is properly treated to remove all minerals from it, it will not leave any by-product in the dies. If the water is not properly treated, then the minerals can cause surface defects and discontinuities.
Today "water-in-oil" and "oil-in-water" emulsions are used, because, when the lubricant is applied, the water cools the die surface by evaporating, hence depositing the oil that helps release the shot. A common mixture for this type of emulsion is thirty parts water to one part oil, however in extreme cases a ratio of one-hundred to one is used. Oils that are used include heavy residual oil (HRO), animal fat, vegetable fat, synthetic oil, and all sorts of mixtures of these. HROs are gelatinous at room temperature, but at the high temperatures found in die casting, they form a thin film. Other substances are added to control the viscosity and thermal properties of these emulsions, e.g. graphite, aluminium, mica. Other chemical additives are used to inhibit rusting and oxidation. In addition emulsifiers are added to improve the emulsion manufacturing process, e.g. soap, alcohol esters, ethylene oxides.
Historically, solvent-based lubricants, such as diesel fuel and kerosene, were commonly used. These were good at releasing the part from the die, but a small explosion occurred during each shot, which led to a build-up of carbon on the mould cavity walls. However, they were easier to apply evenly than water-based lubricants.
Advantages of die casting:[11]
The main disadvantage to die casting is the very high capital cost. Both the casting equipment required and the dies and related components are very costly, as compared to most other casting processes. Therefore, to make die casting an economic process, a large production volume is needed. Other disadvantages are:
Acurad was a die casting process developed by General Motors in the late s and s. The name is an acronym for accurate, reliable, and dense. It was developed to combine a stable fill and directional solidification with the fast cycle times of the traditional die casting process. The process pioneered four breakthrough technologies for die casting: thermal analysis, flow and fill modeling, heat treatable and high integrity die castings, and indirect squeeze casting (explained below).[5]
The thermal analysis was the first done for any casting process. This was done by creating an electrical analog of the thermal system. A cross-section of the dies were drawn on Teledeltos paper and then thermal loads and cooling patterns were drawn onto the paper. Water lines were represented by magnets of various sizes. The thermal conductivity was represented by the reciprocal of the resistivity of the paper.[5]
The Acurad system employed a bottom fill system that required a stable flow-front. Logical thought processes and trial and error were used because computerized analysis did not exist yet; however this modeling was the precursor to computerized flow and fill modeling.[5]
The Acurad system was the first die casting process that could successfully cast low-iron aluminium alloys, such as A356 and A357. In a traditional die casting process these alloys would solder to the die. Similarly, Acurad castings could be heat treated and meet the U.S. military specification MIL-A--D.[5]
Finally, the Acurad system employed a patented double shot piston design. The idea was to use a second piston (located within the primary piston) to apply pressure after the shot had partially solidified around the perimeter of the casting cavity and shot sleeve. While the system was not very effective, it did lead the manufacturer of the Acurad machines, Ube Industries, to discover that it was just as effective to apply sufficient pressure at the right time later in the cycle with the primary piston; this is indirect squeeze casting.[5]
When no porosity is allowed in a cast part then the pore-free casting process is used. It is identical to the standard process except oxygen is injected into the die before each shot to purge any air from the mould cavity. This causes small dispersed oxides to form when the molten metal fills the die, which virtually eliminates gas porosity. An added advantage to this is greater strength. Unlike standard die castings, these castings can be heat treated and welded. This process can be performed on aluminium, zinc, and lead alloys.[16]
In vacuum assisted high pressure die casting, a.k.a. vacuum high pressure die casting (VHPDC),[33] a vacuum pump removes air and gases from die cavity and metal delivery system before and during injection. Vacuum die casting reduces porosity, allows heat treating and welding, improves surface finish, and can increase strength.
Heated-manifold direct-injection die casting, also known as direct-injection die casting or runnerless die casting, is a zinc die casting process where molten zinc is forced through a heated manifold and then through heated mini-nozzles, which lead into the moulding cavity. This process has the advantages of lower cost per part, through the reduction of scrap (by the elimination of sprues, gates, and runners) and energy conservation, and better surface quality through slower cooling cycles.[16]
Semi-solid die casting uses metal that is heated between its liquidus and solidus (or liquidus and eutectic temperature), so that it is in a "mushy" state. This allows for more complex parts and thinner walls.[citation needed]
Low-pressure die casting (LPDC) is a process developed to improve the consistency and integrity of parts, at the cost of a much slower cycle time.[34] In LPDC, material is held in a reservoir below the die, from which it flows into the cavity when air pressure in the reservoir is increased.[34] Typical pressures range from 0.3 bar (4.4 psi) to 0.5 bar (7.3 psi).[34][35] Somewhat higher pressures (up to 1 bar (15 psi)) may be applied after the material is in the die, to work it into fine details of the cavity and eliminate porosity.[34]
Typical cycle times for a low-pressure die casting process are longer than for other die-casting processes; an engine block can take up to fifteen minutes.[34] It is primarily used for aluminum, but has been used for carbon steel as well.[34]
Integrated die casting[36] refers to the high-level integration of multiple separate and dispersed alloy parts through a large-tonnage die-casting machine, and then formed into 1–2 large castings. The aim is to reduce manufacturing costs through one-time molding, significantly decreasing the number of parts needed for car assembly and improving overall efficiency.[37] Elon Musk's team first proposed this processing method during the Tesla manufacturing process which is Giga Press program.[38]
If you are looking for more details, kindly visit Die Casting Services.
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
All Comments ( 0 )