Jul. 28, 2025
Figure 1: Transformer
A transformer is a passive electrical device that uses electromagnetic induction to transfer electrical energy from one circuit to another. Selecting the proper transformer for an application requires careful consideration of several factors, such as voltage, current, type of load, efficiency, environment, and cost. This article gives a step-by-step guide on choosing a transformer and analyzing various powers in a transformer.
Read our overview article on transformers for more information on how they work, their construction, and their types. Transformers are available in multiple designs, specifications, and sizes. It is important to consider the following:
Note: The voltage and frequency of the main power supply vary from one country to the other. Countries like the USA use the main power supply of 120 volts operating at 60 Hz, whereas those in Europe like the UK, Netherlands, and Germany operate at 230 volts and 50 Hz. Choose the transformer accordingly. See the complete list of countries with their corresponding mains power supply voltage and operating frequencies for more details.
Figure 2: Step-down (left) and step-up (right)
Note: Generally, the primary and secondary voltages are listed in the transformer specifications. But in exceptional cases like a current transformer, the primary and secondary currents are listed instead.
The rated load (apparent power) of a transformer is measured by VA (Volt-Ampere). The rated power represents the total amount of power the transformer can deliver to the load. To calculate the rated load needed:
Note: Small transformers rate their deliverable power in volt-amperes, but much larger power transformers are rated in units of Kilo volt-amperes (kVA), and Mega volt-amperes (MVA). Therefore, VA, kVA, and MVA are similar units. For example, 6 VA is equal to 0.006 kVA.
Read our articles on single-phase and three-phase transformers for more information on their working and design.
Transformer load capacity is the maximum amount of electrical power that a transformer can safely and efficiently handle without overheating or causing damage. For example, a transformer with a 200 VA rating can handle 200 volts at one ampere of current or 100 volts at two amperes of current.
Knowing the VA value of the transformer, it is possible to determine the current across the load by rearranging the equation for VA.
Note: Loading a transformer above 80% of its VA rating is not recommended. After calculating the VA, divide the value by 0.8 to get the minimum VA rating needed. An electrician or electrical engineer should review and confirm all values for safety reasons.
Calculate the rated power of a single-phase transformer with a load voltage of 24 volts and a maximum load phase current of 5 amperes.
The VA rating of the transformer = (V × I)= (24 × 5) = 120 VA
Dividing the VA by 0.8, the revised VA = 150
Choose a transformer with a VA rating of approximately 150 for the load.
Goto Tianya to know more.
The efficiency of a transformer is given by:
When dealing with transformers, the primary power is generally referred to as volt-amps (VA) to distinguish it from the secondary power. Therefore, the efficiency is given by:
Transformers have high efficiencies due to the absence of moving parts. Transformers are also called static AC machines. The efficiency of a well-designed power transformer is very high, averaging over 98 percent. The only losses are due to core losses, maintaining the alternating magnetic field, resistance losses in the coils, and power used for cooling.
In an AC circuit, the power factor is the cosine of the phase difference between voltage and current. The power factor represents the fraction of the rated power (apparent power) that is consumed (true power) by a circuit.
Previous: What is Oil Immersed Transformer and Why Do We Use Them?
Next: Questions You Should Know about Electrical Transformer
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
All Comments ( 0 )